Delineation and analysis of chromosomal regions specifying Yersinia pestis.
نویسندگان
چکیده
Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore, our results suggest that acquisition of new chromosomal materials has not been of major importance in the dramatic change of life cycle that has accompanied the emergence of Y. pestis.
منابع مشابه
Simple and Rapid Detection of Yersinia Pestis and Francisella Tularensis using Multiplex-PCR
Background: Yersinia pestis and Francisella tularensis cause plague and tularemia, which are known as diseases of the newborn and elderly, respectively. Immunological and culture-based detection methods of these bacteria are time-consuming, costly, complicated and require advanced equipment. We aimed to design and synthesize a gene structure as positive control for molecular detection of these ...
متن کاملApplication of chromosomal DNA and protein targeting for the identification of Yersinia pestis.
PURPOSE A comprehensive strategy was developed and validated for the identification of pathogens from closely related near neighbors using both chromosomal and protein biomarkers, with emphasis on distinguishing Yersinia pestis from the ancestral bacterium Yersinia pseudotuberculosis. EXPERIMENTAL DESIGN Computational analysis was used to discover chromosomal targets unique to Y. pestis. Locu...
متن کاملCharacterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis.
The transformation of the enteropathogenic bacterium Yersinia pseudotuberculosis into the plague bacillus, Yersinia pestis, has been accompanied by extensive genetic loss. This study focused on chromosomal regions conserved in Y. pseudotuberculosis and lost during its transformation into Y. pestis. An extensive PCR screening of 78 strains of the two species identified five regions (R1 to R5) an...
متن کاملMolecular characterization of IS1541 insertions in the genome of Yersinia pestis.
The genome of Yersinia pestis, the causative agent of plague, contains at least 30 copies of an element, designated IS1541, which is structurally related to IS200 (85% identity). One such element is inserted within the chromosomal inv gene (M. Simonet, B. Riot, N. Fortineau, and P. Berche, Infect. Immun. 64:375-379, 1996). We characterized other IS1541 insertions by cloning 14 different Y. pest...
متن کاملReal-time PCR assays targeting a unique chromosomal sequence of Yersinia pestis.
BACKGROUND Yersinia pestis, the causative agent of the zoonotic infection plague, is a major concern as a potential bioweapon. Current real-time PCR assays used for Y. pestis detection are based on plasmid targets, some of which may generate false-positive results. METHODS Using the yp48 gene of Y. pestis, we designed and tested 2 real-time TaqMan minor groove binder (MGB) assays that allowed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 78 9 شماره
صفحات -
تاریخ انتشار 2010